
NEEDSIM Life simulation version 1.0.1
Manual

By FANTASIELEBEN UG (haftungsbeschränkt)

Programming:

Simulation Tilman Geishauser

Editor Achim Wache

Art:

Sprites Martin Wackerbauer

1

2

Contents

I Introduction 4
1 Product description . 4
2 Further material . 5
3 The basics . 5
4 Sample Scenes . 8
4.1 Naturleben . 8
4.2 Hasenjagd . 9
4.3 Fuchsalarm . 10
4.4 Simple Room . 11
4.5 Spawn Beds . 12
4.6 Simple Time . 13

II Set up 14
5 Setting up your data . 14
5.1 NEEDSIM Manager . 14
5.2 Needs View . 15
5.3 Species View . 16
5.4 Interaction View . 17
5.5 Advanced View . 18
6 Setting up the NEEDSIM Node Component 18
6.1 NEEDSIM Node providing interactions 19
6.2 NEEDSIM Node that is an agent 20

III Running NEEDSIM Life Simulation in your Project 21
7 How to use NEEDSIM Life simulation along common solutions . 21
7.1 Integrating your Navigation Solution 21
7.2 Using Mecanim for Animation . 22
7.3 Integrating NEEDSIM Life simulation with Behavior Trees, GOAP,

etc . 22

IV Tips, Tricks & Troubleshooting 24
8 Tips & Tricks . 24
8.1 Debugging . 24

8.1.1 Debug Log . 24
8.1.2 Slot debugging . 24

8.2 Frequently Asked Questions . 24
9 Troubleshooting . 25

3

V Patch notes 25
10 Patches . 25

4

Part I. Introduction

1 Product description

The NEEDSIM Life simulation makes it quick and easy to simulate daily life
of humans, wildlife or even machines. Assign interactions to game objects, and
NPCs will use them to satisfy their needs: You can make people watch TV when
they are bored, or have animals drink from a lake when thirsty.

Features:

• Creative freedom: You decide which needs to simulate with NEEDSIM
Life simulation.

• One world, many species: Goblins have di�erent needs than humans.

• Design how often agents have to satisfy a need: Make thirst decay fast,
but comfort decay slowly in a hot vacation paradise.

• Interactions can satisfy or decay multiple needs at di�erent rates: Watch-
ing TV might satisfy the entertainment need, but give characters an ap-
petite for snacks.

• Objects have slots that agents can go to when interacting with them: Make
a double bed out of a single bed by adding a slot.

• Freely drag and drop slots around in the scene to decide where characters
will have to be when running the interaction.

• Add a slot to an agent and other agents can run interactions there, for
example allowing a fox to eat a bunny.

• Slot allocation: A smart system takes care of distributing available slots
to agents.

• Multiple databases for di�erent scenes can be managed. In one scene
people might dance and drink in a club, in the next one people could have
needs related to working in an o�ce.

• Chose whether agents focus on their goals or whether they focus on the
utility provided by the available interactions.

• Based on innovative research presented at the Foundations of Digital
Games Conference and the Vienna Game AI Conference.

• Innovative AFFORDANCE TREE technology can be used by program-
mers to manage computational complexity in large worlds with many dif-
ferent interactions - the NEEDSIM Life simulation can scale to your needs.

2 Further material 5

• Six example scenes with various scripts and assets, such as beautiful
spritesheets and animations for wildlife.

• Manage needs, species, interactions and databases in the editor extension
released with the NEEDSIM Life simulation for Unity.

• Debug information: Understand agent state and slot state with our debug
information, visible in play mode.

Please be aware that we do not o�er a navigation or animation solution. How-
ever, our examples provide ideas on how to work with the Unity NavMesh and
Mecanim.

2 Further material

Stay up to date! We are hoping to add helpful material to our website in the
future. Please check out http://www.fantasieleben.com/.

We have made a three minute demo video to get you started. You can watch
it here: https://www.youtube.com/watch?v=VOVHA3oOSQM.

3 The basics

Agents That agents satisfy needs at objects is the basic principle the NEED-
SIM Life simulation builds upon. Agents are all form of non-player characters
(NPCs). The NEEDSIM Life simulation is a multi-agent system: It manages
multiple problems that arise if many agents inhabit the same world.

Needs Agents are driven by their needs. Needs have a satisfaction value with
a minimum value of 0, and a maximum value of 100. Usually each need will
become more urgent at a speci�c rate, agents might for example become more
hungry at a rate of 0.1 per second.

Needs can become critical, and can become satis�ed. You can select values
for these states, for example you can say that hunger is critical below 20, and
satis�ed above 80. This a�ects at which point agents that use goal oriented
behaviors from our sample agent scripts will think about a new action. Fur-
thermore, as a designer, you might want to decide to let an actor that has been
critically hungry for a long time die of starvation - you will have to ask for the
respective state in a script then.

Interactions Hopefully however, the actor will eat something before that hap-
pens. Eating is an interaction. Interactions satisfy (or decay) at least one need
at a speci�c rate, for example eating might satisfy the hunger motif at a rate of
0.3 per second.

Interactions can be used at NEEDSIM Nodes - a drop down menu in the
inspector allows to select an interaction for a game object that has a NEEDSIM

http://www.fantasieleben.com/
https://www.youtube.com/watch?v=VOVHA3oOSQM

3 The basics 6

Fig. 1: The worker shown in this scene went to the desk, because he has a goal
to bring his 'Diligence' need satisfaction above 25, so it is considered
'Uncritical.'. The desk has a 'Work' interaction that satis�es the workers
diligence.

3 The basics 7

Node component attached to it. For example a banana might a�ord the inter-
action to be eaten to the environment - just select the eating interaction in the
inspector.

Species Each agent belongs to one species. Examples for species could be
di�erent kinds of people, animals like cats or even trucks and cars.

What di�erentiates species of agents is which needs they contain. Cats might
not have the need to mark a territory if they encounter a tree, whilst dogs might
have such a need. Zombies might not feel a need to socialize, and thus, unlike
humans, that have this need, will not use phones.

NEEDSIM Manager component You need exactly one NEEDSIM Manager
per Scene. You can attach the NEEDSIM Manager Component to an empty
game object, or use our prefab. In the NEEDSIM Manager you have to reference
the database you want to use in the scene.

NEEDSIM Nodes component Each object that is a�ected by the NEEDSIM
Life simulation needs a NEEDSIM Node component in Unity. You can select
whether the NEEDSIM Node a�ords an interaction to other agents, and if so,
add slots to which agents can go to use the interaction. To add agents to the
simulation tick the isAgent box in the NEEDSIM component, and add a way
for agents to move, for example a Unity NavMeshAgent.

The name comes from the AFFORDANCE TREE, a tree data structure
managing the simulation: Each NEEDSIM Node refers to a node in the AF-
FORDANCE TREE.

4 Sample Scenes 8

4 Sample Scenes

4.1 Naturleben

Fig. 2: Naturleben scene. This scene shows animated objects and agents. Use
the arrow keys to move around in the scene. It has a number of
spritesheets, animations, and custom scripts. The bunnies and deers
will eat, drink and sleep. The three bars next to each character shows
how satis�ed their thirst (blue), hunger (orange) and tiredness (gray)
are.

4 Sample Scenes 9

4.2 Hasenjagd

Fig. 3: Hasenjagd scene. Agents can o�er interactions to the environment. In
this simple scene bunnies have the 'EatBunny' interaction, which sat-
is�es the need 'Hunger', and a slot where this interaction can be used.
New bunnies are spawned, so the fox can always eat. His second need
is 'Thirst'. The lake has three slots with animations that can satisfy
'Thirst' - both for bunnies and the fox. The fern o�ers an interaction
that is only available to bunnies, because its preconditions have been set
up accordingly in the NEEDSIM Editor. Furthermore you can watch
the bunnies sleep in their rabbit holes.

4 Sample Scenes 10

4.3 Fuchsalarm

Fig. 4: Fuchsalarm scene. This scene shows how interruption of NEEDSIM Life
simulation behaviors and a day/night cycle in a more densly populated
world could play like. During night you can press the 'Spawn Fox' button.
This will cause the normal sequence of behaviors of the bunnies to be
interrupted, and the bunnies will not try to satisfy their needs with the
NEEDSIM Life simulation, but instead hide under the tree. However,
there is no safe place, and the fox will hunt down one bunny and eat it
before he disappears again. If the fox is thirsty the fox will drink �rst.
The bunnies run value oriented behaviors. The time system in�uences
how valuable it is to satisfy hunger, thirst and tiredness, so that the
bunnies will usually sleep at night, and drink/eat during the day. If
however they are not very tired, but very hungry, they might still eat at
night. To turn this o� set hunger to zero in the time system script.

4 Sample Scenes 11

4.4 Simple Room

Fig. 5: Simple room scene. This scene allows editing of change rates for needs
and satisfaction rates of interactions at runtime. Shares the default
database with spawn beds scene. This scene shows two species: 'Kid'
and 'Parent'. Unlike 'Parents' 'Kids' have the need to learn. 'Kids' can
satisfy their need for 'Entertainment' both at the TV and with toys. If
you own the NEEDSIM Life simulation you can select a bed in the scene
view and increase the number of slots from one to two to get a double
bed within seconds. Observing this scene for a while is a good way to
understand goal oriented behaviors.

4 Sample Scenes 12

4.5 Spawn Beds

Fig. 6: Spawn Bed Scene. This scene shows spawning and destroying objects at
runtime. It has a custom script for spawning and destroying game objects
with NEEDSIM nodes at runtime. The NEEDSIM Manager is set to not
automatically build an AFFORDANCE TREE upon awake. This is a
good starting point if you want to build your game world procedurally.

4 Sample Scenes 13

4.6 Simple Time

Fig. 7: Simple time scene. Unlike in other example scenes agents here decide
on which slot to go to and interact with based on the current utility
rather than based on goals. A sample script shows how to weight the
value of each need based on time of day. In this example the values are
chosen so that agents might for example sleep during the day if they are
very tired, but usually they will work or, at breakfast, lunch and dinner
time, eat. Respawn characters with the button below to get new random
need satisfaction levels. One objective of this scene is to demonstrate how
value oriented behaviors play out di�erently from goal oriented behaviors
as seen in the Simple Room scene.

14

Part II. Set up

5 Setting up your data

We made the NEEDSIM Life simulation so that you can quickly bring your
unique vision to life and test ideas e�ciently. You can set up species, needs
and interactions by selecting Window -> NEEDSIM Life Simulation. Figure 9
explains how to add, remove and edit needs, �gure 10 explains the editor view for
species, �gure 11 shows the editor view that allows management of interactions.
Multiple databases can be managed in the advanced view explained in �gure
12. Once you created a new database you can select it in your scene using the
NEEDSIM Manager explained in �gure 8.

5.1 NEEDSIM Manager

Fig. 8: NEEDSIM Manager. Please make sure each scene has one single NEED-
SIM Manager. (3) If you are using scene speci�c databases, please select
the database you want to use in the current scene. (1) Furthermore
you can log some information whilst the simulation is running, which is
helpful for support requests. (2) You can decide whether to build the
AFFORDANCE TREE from the scene - this is for example unchecked in
the Spawn Beds example scene, as the AFFORDANCE TREE is build
from the sample script in that scene.

5 Setting up your data 15

5.2 Needs View

Fig. 9: Editor for needs. (1) You can name needs to your liking, for example we
named the need to eat 'Hunger'. Please chose a unique name. (2) How
satis�ed a need is changes over time - we used a negative rate to model
how characters get hungry in a simulation where we assume a value of
100 for 'Hunger' means the agent has a full belly, and zero means he is
starving. (3) Sometimes numbers can make things less clear. A need
does not only have a numeric value, but we de�ne some numeric ranges
to be more abstract states - Critical, Uncritical, Unsatis�ed, Satis�ed
and Maximized. Two sliders make it possible for you to adjust the limits
of these states for individual needs. (4) If you want to add needs, press
the button in the lower left corner of the window. Each need has a delete
button on the very left.

5 Setting up your data 16

5.3 Species View

Fig. 10: Editor for species. Each species is a set of needs. (1) You have to give
a unique name to each species, and will then be able to assign species
to agents by this name. (2) Each species should have at least one need.
Just tick/untick the boxes to determine which needs make it into the
set. (3) If you don't need a speci�c species, delete it by pressing the
delete� button on the right. If you want to add a species there is a
button for creating a new species in the bottom left corner.

5 Setting up your data 17

5.4 Interaction View

Fig. 11: Editor for Interactions. (1) Interactions must have a unique name. (2)
Each interaction a�ects one or more need - move the slider to determine
the amount of a�ected needs. (3) You can select each a�ected need from
a drop down menu and specify a rate (4) at which this speci�c need is
decayed or satis�ed per second. In this example watching TV satis�es
the need for 'Entertainment', (5) but at the same time makes character
feel hungry by decaying the 'Hunger' need. (6) Interactions have a
duration measured in seconds. (7) Some interactions might only be
available under speci�c conditions. Currently you can use the species
of agents as condition for making interactions available to them, and
could for example forbid children to watch TV in your game. (8) You
can add more interactions to your database, and delete them with the
button at the right.

6 Setting up the NEEDSIM Node Component 18

5.5 Advanced View

Fig. 12: Advanced option: Using multiple databases. You can have a database
with needs, species and interactions for each scene. (1) The editor ex-
tension will always show you which database you are currently editing.
(2) In order to select which database to edit please use the drop down
menu. (3) One database has to be marked as default database with the
check box, so that some potential sources of errors can be managed.
(4) The 'Remove database' button appears next to this database for
non-default databases, and will delete the database currently selected
in the drop-down menu. (5) You can add databases by adding a name
and pressing the 'Add Unity database' button . Please keep the .asset
�le in a folder named 'Resources'.

6 Setting up the NEEDSIM Node Component

Once you have de�ned some needs, species and interactions you want to work
with you can set up the characters and props in the scene to work with the
simulation. To do so, attach the NEEDSIMNode.cs script to the respective
game objects. Two typical settings are discussed in this manual, the case of a
smart object that o�ers interactions in �gure 13, and the case of a smart object
that is an agent in �gure 14.

6 Setting up the NEEDSIM Node Component 19

6.1 NEEDSIM Node providing interactions

Fig. 13: Interactive NEEDSIM Node. (1) You can select the interaction a�orded
by this object from a drop down menu. NEEDSIM Nodes that can be
interacted with have one or more slots. (2) Agents can go to a slot to do
the interaction of the node. You can change the number of slots with
the slider or the input �eld next to the slider. (3) First of all, a slot is a
position in the world, shown in the scene view, where it can be moved by
drag and drop. (4) If you prefer entering numbers, you can do so in the
inspector view. (5) There are further, somewhat advanced options. If
you have Gizmos activated, you can see some debug information whilst
the game is running. If you want agents not to look at the center of the
NEEDSIM Node, but somewhere else, you can use custom look ats.

6 Setting up the NEEDSIM Node Component 20

6.2 NEEDSIM Node that is an agent

Fig. 14: Agent NEEDSIM Node. (1) This NEEDSIM node is set to be an agent
with the check box, thus additional options are available. (2) A species
for a node that is an agent can be selected from a drop down menu.
(3) Various sequences of actions are available, and demonstrate how to
author di�erent types of behavior on top of NEEDSIM Life simulation.
Goal oriented behaviors will less often satisfy the lowest need, but lead
to a more stable behavior in some cases. (4) Debug information is
available both in the game and in the inspector. (5) If you don't want
to use random start values for how satis�ed each need is when the agent
is spawned tick the toggle 'Non-random start values' and for each need
that the species entails values between 0 and 100 can be set. (6) Agents
can also be interacted with. Check the Bunny.cs example script to see
more on how the interaction EatBunny is used to allow foxes to hunt
bunnies.

21

Part III. Running NEEDSIM Life

Simulation in your Project

7 How to use NEEDSIM Life simulation along common
solutions

7.1 Integrating your Navigation Solution

In the example scenes that come with the product we use the UNITY NavMesh.
However, with a few steps you should be able to use the NEEDSIM Life Simu-
lation with any navigation solution. For the system to work agents need to be
able to arrive at slots. You might have to make the following changes in order
to use your navigation solution:

• De�ne arrival at a slot: Open the Blackboard.cs �le in NEEDSIM >
Scripts > Agent. The method HasArrivedAtSlot() has a condition we use
for the UNITY NavMesh. You might need a di�erent condition depending
on your project and your navigation solution.

• Replace the call of SetDestination(): Open the Blackboard.cs �le in NEED-
SIM > Scripts > Agent. The method AcceptSlot(...) contains a call of
SetDestination() on the UNITY NavMesh agent.If you don't want to use
the UNITY NavMesh you have to call a similar method from your own
solution.

7 How to use NEEDSIM Life simulation along common solutions 22

7.2 Using Mecanim for Animation

Fig. 15: Mecanim state machine example. The base layer has connections to all
sub-state machines from any state, so it remains simple and clean, even
if you have tons of sub-state machines. The triggers for the transitions
have the same name as the interactions in the NEEDSIM Life simulation
- thus a simple sample script can handle the control of the base layer.
The sample script will always call SetTrigger(interactionName) in the
animator. So if you called the interaction to sleep 'Sleep', and you
named the trigger the same way, then as soon as a character has arrived
at a slot and the NEEDSIM Life simulation has given the �nal ok that
he or she is allowed to do the interaction 'Sleep' SetTrigger("Sleep")
will be called at the animator of the character and thus the sub-state
machine for sleeping animations will be played.

The states the arti�cial intelligence is in are usually not the same as the states of
an animation system. We don't provide a solution for animation at the moment,
and can not yet promise that we will provide a solution in the future.

However, some scenes like our Naturleben scene have sample scripts demon-
strating a simple idea on how to interface our simulation with Mecanim. The
idea is that you name the conditions for your transitions the same way as the
interactions. Then you can call TryConsumingAnimationOrder(Animator ani-
mator) on your NEEDSIM Node.

This method assumes that in the animator a trigger named "Movement"
exists, and that for each interaction a trigger with the same name exists in the
animator, e.g. that for the interaction "Eat" a trigger named "Eat" is in the
animation and is used to transition into a state or sub-state-machine that plays
animation(s) for eating. See an example animator in �gure 15.

This method, and our sample scripts in the Naturleben scene, provide a
starting point when you want to integrate the NEEDSIM Life Simulation into
your project.

7.3 Integrating NEEDSIM Life simulation with Behavior
Trees, GOAP, etc

NEEDSIM Life simulation can easily be integrated into the behaviors or actions
of behavior trees, goal oriented action planning (GOAP), queues, or other agent-

7 How to use NEEDSIM Life simulation along common solutions 23

centric control solutions.. The example behavior scripts are written in a way
that the code used in the Run methods of our example actions can quickly be
copy/pasted into your control solution. NEEDSIM Life simulation ships with
an example scene (see �g. 4) that shows how the NEEDSIM Life simulation
is turned on/o�. NEEDSIM Life simulation is satis�ed with being run in the
IDLE Behavior of your agent-centric solution, so that if your NPC ends up in
a �ght he can go use GOAP/BT/etc. and think about the world from her/his
perspective: Where is my enemy, where is cover, etc. But once she/he is out of
a �ght there is no more need to do so, and the agent can be controlled by the
environment/NEEDSIM Life simulation again.

24

Part IV. Tips, Tricks & Troubleshooting

8 Tips & Tricks

8.1 Debugging

8.1.1 Debug Log

The NEEDSIM Manager A NEEDSIM Manager with the default database
loaded is automatically added to the scene if you press play. However, using
the NEEDSIM Manager Prefab, or adding the script to a game object in the
scene, gives you con�guration options as well as the option to load di�erent
scenes. You can turn o� the debug log to reduce string operations (but you can
of course also just delete the method body in the script to further optimize).

8.1.2 Slot debugging

Slots can be in di�erent states. In order to see the state of a slot whilst the
game is running, you need to activate gizmos in Unity.

• If a slot is green it is available to agents.

• If a slot is yellow, it is reserved to an actor.

8.2 Frequently Asked Questions

How can I use multiple interactions on one object?

Whilst this is not properly tested coders should be able to use the Simula-
tion.A�ordance.AddInteraction() method to add multiple interactions to the
Simulation.A�ordance of an A�ordance Tree node., and can then select which
one to start either randomly, or by using a name. In the NEEDSIMNodeInspec-
tor there should be some commented code that might work and would allow you
to add multiple interactions from the inspector view.

Why is AddNEEDSIMNode not automatically called inside the
NEEDSIMNode?

A reason is that AddNEEDSIMNode(NEEDSIMNode node, NEEDSIMNode
parent) is used to create advanced representations of the world, and a NEED-
SIMNode might not know which parent it should be attached to. For exam-
ple the NEEDSIMRoot.BuildA�ordanceTreeFromNode(NEEDSIMNode node)
method uses the scene hierarchy to build the A�ordance Tree. This allows you
to build a representation of a world with villages with houses with objects such
as beds and tables, and the nodes have to know their parents.

9 Troubleshooting 25

9 Troubleshooting

The NEEDSIM Node Inspector is weird Did you rename a NEEDSIM Node?
In that case you need to change the typeof(...) to the new name in the NEED-
SIMNodeInspector.cs:

CustomEditor(typeof(NEEDSIMNode))]
public class NEEDSIMNodeInspector : Editor

My agents don't do anything If your agents are not doing anything, please
make sure that in the species assigned to the actor you checked at least one need.
Please make sure you have an interaction that can satisfy this need. Please make
sure there is a NEEDSIM Node in the scene that has this interaction. Make
sure that across the objects that have interactions satisfying the need there are
enough slots for all agents.

My agents are not leaving the object they are using. Please make sure the
interaction a�orded by the object satis�es the agents current need - The value
at which it increases need satisfaction should be higher than the value at which
the need decays.

Please make sure your navigation solution works properly The example agent
that comes with the product relies on navigation information. When using the
example agent or similar solutions, please make sure slots are on your NavMesh
solution, and that arrival at a slot can be properly validated.

There can be issues with multiple agents going to overlapping slots, for
example if they have a rigidbody attached - there should be enough distance
between slots, so that agents can use them.

Please make sure each game object uses only one NEEDSIM Node Having
more than one NEEDSIM Node component on the same game object can result
in values being overwritten.

Part V. Patch notes

10 Patches

Patch 1.0.1

New features

• The inspector of the NEEDSIMNode now shows a toggle �Use non-random
start values�. If ticked you can select speci�c start values for each need.

10 Patches 26

• NEEDSIMNodes now have a method that will help the method NEED-
SIMRoot.BuildA�ordanceTreeFromNode(NEEDSIMNode node) build an
A�ordance Tree from a speci�c node.

• The scene 04. Simple Room now lets you edit at runtime how needs
change per second, and how interactions a�ect needs. The scripts Input-
FieldRuntimeEditing.cs and SpawnUIRuntimeEditing.cs are new, as well
as the prefab InputFieldRuntimeEditing.cs

Name changes

• The example action provided in DoSingleInteraction.cs had a misleading
name, and we renamed this script to SatisfyUrgentNeed.cs

Polish of API and documentation

• We added more comments.

• The sample scripts now have tooltips instead of comments for their prop-
erties.

The API was unnecessarily complicated so we made some changes that are un-
likely to a�ect anyone so soon after the initial release.If they do, please write to
support@fantasieleben.com and we will help you out. The bene�t is that poten-
tial sources or errors are reduced, and that code completion and documentation
are less cluttered. The changes include:

• The method Simulation.A�ordanceTreeNode.Update() was only called once
from the root (recursive method to update all nodes in the tree), so to im-
prove the API we made Simulation.Manager.Instance.UpdateA�ordanceTree()
the place to update the tree.

• Simulation.NeedItem constructor no longer has min/max values as the
default values were used.

• Unnecessary strings in our Simulation.Strings class were removed, as the
features they were written for no longer exist or have changed.

• Some properties that are potential sources of error if used wrongly have
been made internal instead of public in Simulation.GameDataManager,
Simulation.Goal, Simulation.SimulationData and Simulation.A�ordanceTreeNode.
Simulation.SimulationData now exposes ChangePerSecond - see scene 04.
Simple Room for how to work with it.

• The Uncritical state has been removed from the Simulation.Needs.NeedSatisfactions
enum, as it is meaningless in the current simulation.

• Methods of the NEEDSIMEditor that where exposed by mistake are no
longer exposed.

10 Patches 27

Further small �xes

• The default name for new databases has been changed.

• Small mistakes in the manual have been corrected.

• A potential source of errors in how the A�ordance Tree was build has been
�xed.

	I Introduction
	Product description
	Further material
	The basics
	Sample Scenes
	Naturleben
	Hasenjagd
	Fuchsalarm
	Simple Room
	Spawn Beds
	Simple Time

	II Set up
	Setting up your data
	NEEDSIM Manager
	Needs View
	Species View
	Interaction View
	Advanced View

	Setting up the NEEDSIM Node Component
	NEEDSIM Node providing interactions
	NEEDSIM Node that is an agent

	III Running NEEDSIM Life Simulation in your Project
	How to use NEEDSIM Life simulation along common solutions
	Integrating your Navigation Solution
	Using Mecanim for Animation
	Integrating NEEDSIM Life simulation with Behavior Trees, GOAP, etc

	IV Tips, Tricks & Troubleshooting
	Tips & Tricks
	Debugging
	Debug Log
	Slot debugging

	Frequently Asked Questions

	Troubleshooting

	V Patch notes
	Patches

